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Diffuse Optical Tomography

What is Diffuse Optical Tomography (DOT)?

DOT is a non-invasive technique that utilize light in the near infrared
spectral region to measure the optical properties of physical body.

The object under study has to be light-transmitting or translucent, so it
works best on soft tissues such as breast and brain tissue.

By monitoring spatial-temporal variations in the light absorption and
scattering of the tissue, spatial maps of properties such as total
hemoglobin concentration, blood oxygen saturation and scattering can
be obtained.

DOT has been applied breast cancer imaging, brain functional imaging,
stroke detection, muscle functional studies, etc.
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Diffuse Optical Tomography

The mathematical model

A simplified equation to model the light propagation is the following:

(DP)

{ −∇ · (a(x)∇u)+ c(x)u = 0 in Ω

a(x)
∂u
∂ν

= g on Γ.

u photon density.

a(x) diffusion coefficient.

c(x) absorption coefficient.
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Diffuse Optical Tomography

Forward map

Parameter-to-measurement (forward) map

F := Fg : D(F) → H1/2(Γ)

(a,c) 7→ h := u|Γ,

where u = u(g) is the unique solution of (DP) given the boundary data g
and the pair (a,c).

D(F) is the set of piecewise constant functions (a,c) ∈ [L1(Ω)]2 s.t.

a≤ a(x)≤ a, c≤ c(x)≤ c a.e. inΩ,

where a, a, c and c are known non negative real numbers.
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Diffuse Optical Tomography

Inverse problem

Since the optical properties within tissue are determined by the values
of the diffusion and absorption coefficients, the problem of interest in
DOT is the simultaneous identification of both coefficients from
measurements of near-infrared diffusive light along the tissue boundary.

Given a finite number of measurements hm, corresponding to inputs
gm = ∂um

∂ν
.

Find (a,c) ∈ D(F) such that

Fm(a,c) = hm, for m = 1, . . . ,M. (1)
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Diffuse Optical Tomography

Inverse problem

Given the nature of the measurements, we can not expect that exact
data hm are available. Instead, one disposes only an approximate
measured data hδ

m satisfying∥∥∥hm−hδ
m

∥∥∥
L2(Γ)

≤ δ , for m = 1, . . . ,M

where δ > 0 is the noise level.

Find (a,c) ∈ D(F) such that

Fm(a,c) = hδ
m, for m = 1, . . . ,M. (2)
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Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Level set approach

Level set functions φa,φc ∈ H1(Ω) are chosen in such a way that
discontinuities of the coeficcients (a,c) are located “along” its zero level
sets Γφi := {x ∈Ω |φi(x) = 0}.

The diffusion and absorption coefficients can be written as

(a,c) =
(
a2 +(a1−a2)H(φa),c2 +(c1− c2)H(φc)

)
=: P(φa,φc)

Inverse problem:

Find (φa,φc) ∈ [H1(Ω)]2 such that

Fm(P(φa,φc)) = hδ
m, for m = 1, . . . ,M.
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Level set approach
Level set approach: convergence analysis
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Level set regularization

A natural alternative to obtain stable solutions is to use a least-square
approach combined with a Tikhonov-type regularization

Fα(φ
a,φc) :=

M

∑
m=1
‖Fm(P(φa,φc))−hδ

m‖2
L2(Γ)+αR(φa,φc) (3)

where

R(φa,φc)= ‖φa−φ
a
0‖2

H1(Ω)+‖φ
c−φ

c
0‖2

H1(Ω)+βa|H(φa)|BV(Ω)+βc|H(φc)|BV(Ω)

α > 0 plays the role of a regularization parameter and β j are scaling
facor.

The H1(Ω) terms act as a control on the size of the norm of the level set
function (key role to prove uniqueness of the existence of φi).

The BV(Ω)-seminorm terms penalize the length of the Hausdorff

measure of the boundary of the sets Γ
φi

0 .
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Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Continuous operator

For each ε > 0, the smooth approximations

Hε(t) :=
{

1+ t/ε for t ∈ [−ε,0]
H(t) for t ∈ R\ [−ε,0]

Pε(φ
a,φc) :=

(
a2 +(a1−a2)Hε(φ

a), c2 +(c1− c2)Hε(φ
c)
)
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The concept of generalized minimizers

A vector (z1,z2,φa,φc) ∈ [L∞(Ω)]2× [H1(Ω)]2 is called admissible if
there exist sequences {φ j

k} of H1-functions and a sequence {εk} ∈ R+

converging to zero such that

lı́m
k→∞
‖φ j

k−φ
j‖L2(Ω) = 0 and lı́m

k→∞
‖Hεk(φ

j
k)− z j‖L1(Ω) = 0 .

A generalized minimizer of the functional Fα in (3) is any admissible
vector (z1,z2,φa,φc) minimizing

F̂α(z1,z2,φa,φc) :=
M

∑
m=1
‖Fm(Q(z1,z2))−hδ

m‖2
L2(Γ)+αρ(z1,z2,φa,φc),

(4)

Q(z1,z2) := (a2 +(a1−a2)z1, c2 +(c1− c2)z2) ,

ρ(z1,z2,φa,φc) := ı́nf
{

lı́minfk→∞ ∑
2
j=1

(
β j|Hεk (φ

j
k)|BV+‖φ

j
k−φ

j
0‖

2
H1

)}
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Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Convergence Analysis

Theorem (DC-L-T 2009)

1 [Well-posedness] F̂α in (4) attains minimizers on the set of admissible vectors.
2 [Convergence for exact data] Assume that hδ = h. For every α > 0 denote by

(z1
α,z

2
α,φ

a
α,φ

c
α) a minimizer of F̂α. Then, for every sequence of positive numbers

{αk} converging to zero there exists a subsequence, denoted again by {αk},
such that (z1

αk
,z2

αk
,φa

αk
,φc

αk
) is strongly convergent in [L1(Ω)]2× [L2(Ω)]2.

Moreover, the limit is a solution of (1).
3 [Convergence for noisy data] Let α = α(δ) be a function satisfying lı́mδ→0

α(δ) = 0 and lı́mδ→0 δ2α(δ)−1 = 0. Moreover, let {δk} be a sequence of
positive numbers converging to zero and {hδk} be corresponding noisy data.
Then, there exists a subsequence, denoted again by {δk}, and a sequence
{αk := α(δk)} such that (z1

αk
,z2

αk
,φa

αk
,φc

αk
) converges in [L1(Ω)]2× [L2(Ω)]2 to

a solution of (2).
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Convergence Analysis

Generalized Meyers’ Theorem

Let Ω⊂ Rn, n ∈ {2,3,4}, be a connected bounded open set with a Lipschitz
boundary Γ and let (a,c) ∈ D(F). Then, there exists a real number pM > 2
(depending only on Ω, a,a,c and c) such that the following condition hold for every
p ∈ (2, pM):
If g ∈W 1−(1/q),q(Γ)′, where q := p/(p−1), then the unique solution u of (DP)
belongs to W 1,p(Ω).
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Level set regularization: numerical realization.

In this case, the energy functional is:

Fα,ε(φ
a,φc) :=

M

∑
m=1
‖Fm(Pε(φ

a,φc))−hδ
m‖2

L2(Γ)+αRε(φ
a,φc)

where

Rε(φ
a,φc)= |Hε(φ

a)|BV(Ω)+|Hε(φ
c)|BV(Ω)+‖φa−φ

a
0‖2

H1(Ω)+‖φ
c−φ

c
0‖2

H1(Ω)



Introduction
Inverse Problem

Numerical Examples
Conclusion
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Level set regularization: numerical realization.

Theorem

1 Given α, ε > 0 and φi
0 ∈ H1, the functional Fα,ε attains a minimizer on [H1(Ω)]2.

2 Let α be given. For each ε > 0 denote by (φa
ε,α,φ

c
ε,α) a minimizer of Fα,ε. There

exists a sequence of positive numbers {εk} converging to zero such that
(φa

εk,α
,φc

εk,α
) converges strongly in [L2(Ω)]2 and the limit is a generalized

minimizer of Fα.

Differently from Fα, the minimizers of Fα,ε can be computed.

Derive the first order optimality condition for a minimizer of Fα,ε.
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Level set regularization: numerical realization.

First order optimality condition: ∂Fα,ε

∂φ j (h) = 0 ∀h ∈ H1(Ω).

α(∆− I)(φ j−φ
j
0) = L j

ε,α(φ
a,φc) in Ω

∂

∂ν
(φ j−φ

j
0) = 0 on Γ.

La
ε,α(φ

a,φc) = (a1−a2)H ′ε(φ
a)

[
M

∑
m=1

(
∂Fm(Pε(φ

a,φc))

∂φa

)∗
(Fm(Pε(φ

a,φc))−hδ
m)

]

−αβa

[
H ′ε(φ

a)∇·
(

∇Hε(φ
a)

|∇Hε(φa)|

)]
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Iterative regularization algorithm

1. Evaluate the residual

rk,m := Fm(Pε(φ
a
k ,φ

c
k))−hm = uk,m|Γ

−hm, m = 1, . . . ,M.

2. Evaluate
(

∂Fm(Pε(φ
a
k ,φ

c
k))

∂a

)∗
and

(
∂Fm(Pε(φ

a
k ,φ

c
k))

∂c

)∗
m = 1, . . . ,M.

3. Calculate δφi
k solutions of the BVP{

(∆− I)δφi
k = Li

ε,α(φ
a
k ,φ

c
k) in Ω

∂δφi
k

∂ν
= 0 on Γ.

4. Update the level set functions

φ
a
k+1 = φ

a
k +δφ

a
k and φ

c
k+1 = φ

c
k +δφ

c
k
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Identification of the absorption
Identification of the difussion
Identification of absorption and diffusion coefficients

Numerical Examples

X

Y

0 0.5 1
0

0.5

1

a∗(x)=
{

10 , inside blue inclusion
1 , elsewhere , c∗(x)=

{
10 , inside red inclusion

1 , elsewhere.

Four (M = 4) distinct functions gm, each one supported at each side of Γ.
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Identification of the absorption
Identification of the difussion
Identification of absorption and diffusion coefficients

Identification of the absorption coefficient c(x)

a∗ is assumed to be exactly known

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Iteration k

L
2
 e

rr
o

r

|| c
*
 − c

k
 ||

L
2

 

X

Y

Difference  c
*
 − c

k
  −−  Iteration k = 0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

X

Y

Difference  c
*
 − c

k
  −−  Iteration k = 2500

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

a∗ is assumed to be unknown: a∗ ≡ 1

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Iteration k

L
2
 e

rr
o

r

|| c
*
 − c

k
 ||

L
2

 

X

Y

Difference  c
*
 − c

k
  −−  Iteration k = 0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

X

Y

Difference  c
*
 − c

k
  −−  Iteration k = 2500

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1



Introduction
Inverse Problem

Numerical Examples
Conclusion

Identification of the absorption
Identification of the difussion
Identification of absorption and diffusion coefficients

Identification of the diffusion coefficient a(x)

c∗ is assumed to be exactly known
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Split strategy

Some facts to take into account:
1 The method for identifying c∗ performs well, even if a good approximation

of a∗ is not known.
2 On the other hand, the method may generate a sequence ak that does not

approximate a∗ if ‖ck− c∗‖ is large.
3 For simultaneous identification of (a∗,c∗) we observed that the error
‖ck− c∗‖ decreases from the very first iteration. However, the error
‖ak−a∗‖ only starts improving when ‖ck− c∗‖ is sufficiently small.

Split strategy:
1 Set ak(x)≡ 1 and iterate w.r.t. ck until the sequenece ck stagnates

(‖ck− c∗‖ is small).
2 Set ak(x)≡ ak1 and iterate w.r.t. ak until the sequenece ak stagnates

(‖ak−a∗‖ is small).
3 Each iteration step consist in one iteration w.r.t. ck and two iterations w.r.t

ak.
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Identification of both coefficients: example 1
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Identification of both coefficients: example 2
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Some comments

We developed a level set approach for simultaneous reconstruction of
the piecewise constant coefficients (a,c) from a finite set of boundary
measurements of optical tomography in the diffusive regime.

We proved that the forward map F is continuous in the L1-topology.
Hence, by previous results, the presented level set approach is a
regularization method.

We proposed a split strategy for the simultaneous identification. Such
strategy produces very good results when a∗ and c∗ have no crossing
supports.

The strategy reduces significatively the numerical computational time.
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¡ Muchas gracias !
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